

Die Rahmenbedingungen an der Iller

- Staustufenkette mit fünf Laufwasserkraftwerken
- Wasserkraft alleiniger Verursacher ökologischer Defizite
- Keine Erosionsproblematik
 - → Illercanyon ist natürliche Erosionsstrecke
- In jeder Unterwasserstrecke existiert eine freie Fließstrecke
- Kraftwerke werden im Schwellbetrieb gefahren
- Hochwasserschutz spielt untergeordnete Rolle

Was bedeutet: Integrated Solutions for Bedload Management?

Verbesserung der ökologischen Situation

Was bedeutet: Integrated Solutions for Bedload Management?

Bau von Fischwanderhilfen als naturnahe **Umgehungsgewässer** mit vielfältigen **Habitatfunktionen**

Bau von Fischwanderhilfen als naturnahe **Umgehungsgewässer** mit vielfältigen **Habitatfunktionen** Abflachung von Uferbereichen für laterale

Durchgängigkeit, Vegetationsentwicklung und

Umlagerung

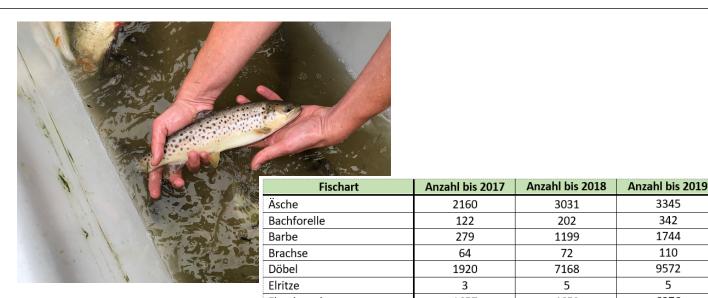
Gezielte Kieszugaben zur Verbesserung der ökologischen und hydromorphologischen Situation

Gezielte Kieszugaben zur Verbesserung der ökologischen und hydromorphologischen Situation

Aktive Laichbettbereitung und Erhöhung der Strömungsdiversität durch **Strukturelemente**

Welche Ergebnisse wurden mit den Maßnahmen erzielt?

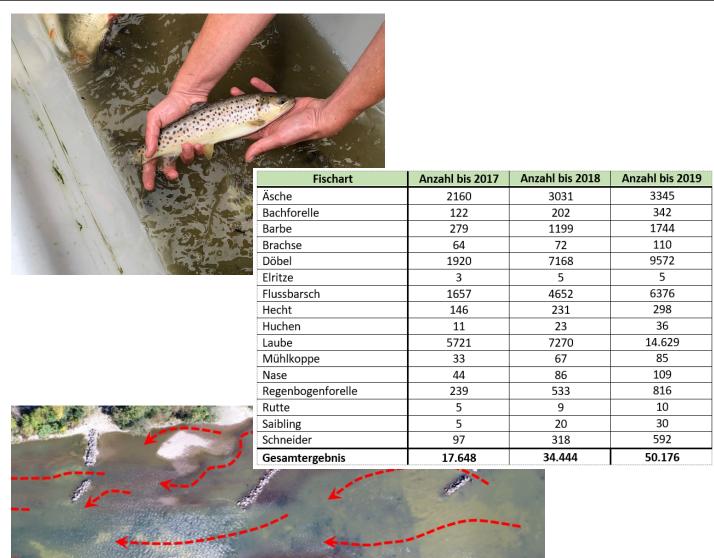
- Positive Entwicklung der Zielfischarten, trotz Populationsrückgang 2019 (hochwasserbedingt)
- Fischökologische Durchgängigkeit beim Aufwärtswandern erreicht
- Fischwanderhilfen werden als Habitat angenommen


Fischart	Anzahl bis 2017	Anzahl bis 2018	Anzahl bis 2019
Äsche	2160	3031	3345
Bachforelle	122	202	342
Barbe	279	1199	1744
Brachse	64	72	110
Döbel	1920	7168	9572
Elritze	3	5	5
Flussbarsch	1657	4652	6376
Hecht	146	231	298
Huchen	11	23	36
Laube	5721	7270	14.629
Mühlkoppe	33	67	85
Nase	44	86	109
Regenbogenforelle	239	533	816
Rutte	5	9	10
Saibling	5	20	30
Schneider	97	318	592
Gesamtergebnis	17.648	34.444	50.176

Annahi his 2017 Annahi his 2019 Annahi his 2010

Welche Ergebnisse wurden mit den Maßnahmen erzielt?

- Positive Entwicklung der Zielfischarten, trotz Populationsrückgang 2019 (hochwasserbedingt)
- Fischökologische Durchgängigkeit beim Aufwärtswandern erreicht
- Fischwanderhilfen werden als Habitat angenommen
- Verbesserung der hydromorphologischen Verhältnisse
- Laichhabitate jetzt auch in der ller
- Entwicklung Makrozoobenthos sehr positiv


riscilai t	Alizaili bis 2017	Alizaili bis 2016	Alizaili bis 2013
Äsche	2160	3031	3345
Bachforelle	122	202	342
Barbe	279	1199	1744
Brachse	64	72	110
Döbel	1920	7168	9572
Elritze	3	5	5
Flussbarsch	1657	4652	6376
Hecht	146	231	298
Huchen	11	23	36
Laube	5721	7270	14.629
Mühlkoppe	33	67	85
Nase	44	86	109
Regenbogenforelle	239	533	816
Rutte	5	9	10
Saibling	5	20	30
Schneider	97	318	592
Gesamtergebnis	17.648	34.444	50.176

Welche Ergebnisse wurden mit den Maßnahmen erzielt?

- Positive Entwicklung der Zielfischarten, trotz Populationsrückgang 2019 (hochwasserbedingt)
- Fischökologische Durchgängigkeit beim Aufwärtswandern erreicht
- Fischwanderhilfen werden als Habitat angenommen
- Verbesserung der hydromorphologischen Verhältnisse
- Laichhabitate jetzt auch in der ller
- Entwicklung Makrozoobenthos sehr positiv
- Sedimentkontinuität ökologisch nicht notwendig!

Welche Handlungsempfehlungen ergeben sich daraus?

Fokussierung auf drei Handlungsfelder

Handlungsfeld außerhalb des Gewässers

- Umgehungsgewässer mit Anschluss an die fließende Welle
 - → Wassertemperaturen
- Umgehungsgewässer mit Habitatfunktionen
 - → Kolmation verhindern!
- Möglichst selbständige Entwicklung zulassen
 - → Strukturreichtum

Welche Handlungsempfehlungen ergeben sich daraus?

Fokussierung auf drei Handlungsfelder

Handlungsfeld außerhalb des Gewässers

- Umgehungsgewässer mit Anschluss an die fließende Welle
 - → Wassertemperaturen
- Umgehungsgewässer mit Habitatfunktionen
 - → Kolmation verhindern!
- Möglichst selbständige Entwicklung zulassen
 - → Strukturreichtum

Handlungsfeld im Gewässer

- Gezielte Kieszugabe als ökologische Maßnahme
 - → hydraulische Bedingungen!
- Ggf. gezielte Laichbettbereitung
- Hydromorphologische Strukturen im Gewässer schaffen
 - → angepasstes Vorgehen

Welche Handlungsempfehlungen ergeben sich daraus?

Fokussierung auf drei Handlungsfelder

Handlungsfeld außerhalb des Gewässers

- Umgehungsgewässer mit Anschluss an die fließende Welle
 - → Wassertemperaturen
- Umgehungsgewässer mit Habitatfunktionen
 - → Kolmation verhindern!
- Möglichst selbständige Entwicklung zulassen
 - → Strukturreichtum

Handlungsfeld im Gewässer

- Gezielte Kieszugabe als ökologische Maßnahme
 - → hydraulische Bedingungen!
- Ggf. gezielte Laichbettbereitung
- Hydromorphologische Strukturen im Gewässer schaffen
 - → angepasstes Vorgehen

Handlungsfeld Ufer / Aue

- Rückbau von versteinten Ufern
 - → laterale Durchgängigkeit
- Zulassen von morphologischen Prozessen
- Raum für Vegetationssukzessionen
- Anbindung und Durchgängigkeit von Nebengewässern

Wie lassen sich die erzielten Ergebnisse nachhaltig weiterentwickeln?

Entwicklung im Gewässer und seiner Uferbereiche

- Nachhaltig bedeutet langfristig selbsttragend!
- Ausnutzen der natürlichen Potentiale im Flusssystem
 - Nutzung von Illerkies
 - Nutzung der Kieseinträge von Seitengewässern
 - Rückbau von Uferbefestigungen
 - Zulassen morphodynamischer Prozesse zur Verbesserung der Habitatdiversität

Wie lassen sich die erzielten Ergebnisse nachhaltig weiterentwickeln?

Entwicklung der Umgehungsgewässer

- Etablierung weitgehend selbsttragender Prozesse
- Dotierung variabel gestalten
- Initiieren morphodynamischer Prozesse zur Schaffung von Habitatdiversität
- Anlage und Pflege von Laichhabitaten
- → Expertise des Aueninstituts

Universität Augsburg Fakultät für Angewandte Informatik
Projekt ISOBEL:

Geschiebemanagement in Staustufenketten - Handlungsempfehlungen für die Iller

Prof. Dr. K.-F. Wetzel

14.10.2021

